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ON THE KINETIC THEORY OF THERMAL HYDRODYNAMIC FLUCTUATIONS 
IN INHONOGENEOUS GAS* 

0. A. GRBCHANNY I and V. V. TOKARCBUK 

Equations are derived for thermal fluctuations of hydrodynamic fields in inhomo- 
geneous gas streams. A modification of the Chapman-Enskog method of deriving 
standard solutions of the Boltzmann- Langevin kinetic equation for unbalancedphase 
density fluctuation is used. Expressions independent of thermodynamic mean fluxes 
are obtained for correlators of external heat lux sources and stress tensor fhct- 
uations. Obtained formulas generalize the Landau-Litshitz formulas and extend the 
fluctuation-dissipation theorem to the domain of nonequilibrium stable states. 

Recent interest in the theory of thermal noise in hydrodynamic systems is due to the 
possibility of extending it to the domain of nonequilibrium states. This is particularly im- 
portant in the derivation of solutions of problems of simulation of unbalanced system anomal- 
ous behavior near the equilibrium threshold. 

In the formal application of the equilibrium theory in investigations of unbalanced 
fluctuations one is confronted with the problem of determining the simultaneous statistical 
characteristics of hydrodynamic fields in the Onsager method, or of determining the statistic- 
al properties of external fluctuation sources in the Langevin method. Both problems are in 
essence equivalent to the problem of extending the fluctuation-dissipation theorem /l/ tothe 
domain of unbalanced states. They have a complete solution /2-44/ at the kinematic level of 
the gas system evolution definition, and yield the Boltzmann- Langevin equation for the un- 
balanced phase density fluctuation /3/. 

Basic equations of the kinetic theory /2-44/ represent a reasonable basis for.subsequent- 
ly passing to the hydrodynamic level of definition of transport processes and nonequilibrium 
thermal fluctuations in gas. The results obtained earlier in this way /5,6/ are substantially 
constrained by the condition of local thermodynamic equilibrium, and, consequently, do not 
take into account the effect of the system inhomogeneity on the statistical properties of ex- 
ternal fluctuation sources in hydrodynamic equations representing a trivial extension of the 
equilibrium theory /7/. In investigations of a number of phenomena, in particular of the 
anomalous fluctuation increase in the region of stability threshold and their part in the 
process of turbulence onset /5,8,9/, it is necessary to take into account the effect of in- 
homogeneity on the statistical structure of fluctuating hydrodynamic fields. Investigation 
of these effects in gas streams is the subject of this paper. 

1. Statistical structure of external fluctuation sources in equations of 
gasdynamics. In describing the kinetic development stage of the classical monatomic gas 
with allowance for large scale fluctuations we use the concept of random field of macroscopic 
densities of the state of system N(t, 2) in the p-space whose mean value defines the single- 
particle distribution function F(t, z) = (iV(t, z)), where z = (r, v) normalized with respect to 
the particles number N" /2-44/. Generally N(t,z) satisfies the fairly complex nonlinear 
stochastic equation /4/. However in the domain of nonequilibrium but stable state of gas,in 
which the level of thermal fluctuation intensity bN =N-_F is low, that equation is con- 
siderably simplified /lo/, splitting into the system of equations of the kinematic fluctua- 
tion theory /3/ 

(&i-v.V)F(t,x)=J,(F, F) 

(+ + ~4') 6N (t, x) = J,‘(F) 6N (t, x) + 61 (t, x) 

(1.1) 

(1.2) 

where J,(F, F) and J,‘(F) are Boltsmann integrals and the linearized collision operator,and 
61 0, x) is the Gaussian random field with zeromeanvalue and the correlation function 
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<61 k, 2,) 61 (tz, s,)) = 6(t, - tJ 6 (rl - r2) D [F, F; vl, ~2) = 
6 @I - &I 6 (rl - r2) {JhvZ (F, F) + 6 (vl - VJ J,, (F, F) - 
[Jv, (4 + Jo,’ VII F (h, q) 6 (~1 - vz)} 

(1.3) 

where J,,,(F, F) is the "nonintegrated collison integral" whose definition is givenby formula 
(23.12) in /3/. Equations /l.l/ and /1.2/ with formula (1.3) constitute the mathematical 
basis of the considered here kinetic theory of hydrodynamic fluctuations in inhomogeneous gas 
streams. 

The fluctuating collision integral 61 in (1.2) is independent of 6N and is, thus, an 
"external" fluctuation source in the Boltzmann equation linearized with respect to smallde- 
flections of phase density 6N from its mean value F. By virtue of (1.3) its statistical 
properties depend on the extent of the gas nonequilibrium. It is important to point out the 
part played by individual terms in expression (1.3) in the formation of statistical structure 
of the random field 6N. Using Eq.(l.l) we can represent the last three terms in the right- 
hand side of (1.3) as 

Taking this into account we obtain for the simultaneous fluctuation correlator the representa- 
tion 

<6N (& 11) CM' (t, .22)> = 6 (51 - r.J F (t. 51) + g (t, 51, 9) (1.5) 

and for the three-dimensional correlation function g the equation 

($ -j- z [vi.Vi - Jii (F)]) g (t, ~17 9) =6 (rl--2) JoLo (F, F) 
i=l, * 

(1.6) 

Thus in (1.3) the effects related to statistical links between nonequilibrium gas volumes 
distributed in space are associated with the term J,,,, . In the state of local thermodynamic 
equilibrium J,,, = 0 and Eq.(1.6) has a trivial solution which ensures the three-dimensional 
space 6 -correlation of simultaneous fluctuations, related to the last terms in (1.3). At 
small deviations from the local thermodynamic equilibrium formula (1.3) ensures the appear- 
ance of nonequilibrium additions to the 6 -correlated part of the equilibrium formula (1.5) 
with the simultaneous generation of spatial statistical links (g#O). The successive taking 
into account of spatial correlations in the hydrodynamic. limit is of fundamental importance 
in the investigation of gas stream structure near the stability threshold /8,9/, and is a 
feature of the present investigation which distinguishes it from known investigations /5,6,11/ 
in the kinetic theory of hydrodynamic fluctuations. 

Let us pass to the hydrodynamic description of transport and fluctuation processes in a 
nonequilibrium gas. From (1.1) we obtain the system of equations of transport for mean values 
of hydrodynamic fields /12/, whose abbreviated form 

$& (t, r) + (Sa (3; r) = Ha (@ r), cc=O, 1,2,3,4 (1.7) 

is used subsequently. We denote by Oag' and HasI the linearized operators 

eai (G; r) z (r)=(z, d5J8, (5; r), H&p (@; r) z (r)=(z, f&) Ha (@ r) 
where 

(x, a,B) = i dr'z (r') 6/6$ (r') , Ho = 0, Hk = - (mii)-’ V&, k = 1, 2, 3, Ha = -n-l (VGjf + hV&) 

h/b?&(r) is the functional derivative, 5 = (So,, CC,, Sz, 5*, SJ = (Fi, tir, U,, &2) are mean 

values of density n, of hydrodynamic velocity uk(k = 1,2,3) and of thermal energy e = 3kT/2, 

o,(s) is the nonlinear Euler operator, and ql and .&.l are mean values of the heat flux and 

of viscous stress deviator. Here and below recurrent Latin subscripts indicate summation from 
1 to 3, and the Greek ones summation from 0 to 4. 

Using the system of additive collision invariants 

q0 = 1, $k = K1clr (k = 1, 2, 3), $4 = ii-‘(m” - E), ch- = I+ - ii, 

we represent fluctuations of hydrodynamic fields sQj = 6n, && = Sukr 6@, = 6e in the form 

60, (t, r) = jdv$,SN (t, r, v), a = 0, 1, 2, 3, 4 (1.8) 
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Formula (1.3) implies that the realization of the random field &1(&Z) belongs to phase 
function subspace which is orthogonal to subspace spanning the collision invarlsnts, i.e. 

Jdvrlb,SI(t, T, v) = 0; a = 0, 1, 2,3,4 (1.9) 

hence the calculation of moments of Eq.fl.2) with allowance for (1.8) yields for the hydro- 
dynamic functions the system of transport equations 

(1.10) 

where 8 denotes a linear variation of the quantities appearing in square brackets, for @x- 
ample, 8 In-lPrlVturl = -fi?8ntik,Vlu~ + ii-lBPk,Vluk + i?F~,V&& the mean value of heat flux qkr of 
the stress tensor i& , and of their fluctuations Sqk and 8Pk, are defined by the form- 
ulas 

&f&r) =+ S~vc~ca~(~,~)* &(t,r)=m f dv (CJ&)& P&cc) (1.11) 

Wt,r)=+S dvc,c~8iv(t,z), 8P~~(t,r)= I72 dv(c& snr (Gs) 
s 

where (c&, = Z'(C~C~ + cIck) - 3-'8rlc'. 
To close the transfer equations (1.10) and (1.7) it is necessary to determine the func- 

tional dependence of ijr and & on & and 8~b and 6Pkl on 3 and 8Qt . As shown in 
/12/, the first of these problems is solved by constructing standard so$tions of Eq.U.1). 
The Chapman-Enskog method yields & = -lV,T,li,, = -2ij(V,ii,),r where A=%,(T) and t-q(T) 
are the coefficients of thermal conductivity and viscosity, that are the Fourier and Newton's 
laws, with an accuracy to terms of the order of K (the Knudsen number). To utilize this 
result it is necessary to modify in kqs.(l.lO) the Chapman-Enskog method in its application 
to the stochastic kinetic equation (1.2), to derive its standard solution with the samedegree 
of accuracy (of the order of II), and calculate in that approximation fluctuations of thermo- 
dynamic fluxes, using formulas (1.11). The execution of this scheme is given below. Its 
basic result is the derivation of formulas 

8Yr 6, z) = (&%, + P&r) 8nl - 8 [h(T)yfi,Tl -I- 8Qk (t, r) (1.12) 
@RI (t, r) = --8 12n (T) (g,u,),l + 81[I,l (t, r) 

where && and si&* represent external sources of the heat flux and stress tensor fluctua- 
tions, which are random Gaussian fields with zero mean value and the correlation functions 

(8Qk(1)6Q;(2))- 2kT%6(1- 2) [Ski -t_ & $1 (1.13) 

<8n,,(1)8~I,,(2))=~:T~8(1 -Z)E;;+,,' -+- +] 

(8Q*t~~8~kr(2)) =~~~(~-2)~~~~= 

where the arguments 1 and 2 of functions denote the sets (tl, rJ and (t*, r*), and jj is the 
hydrostatic pressure 

Taking into account formulas (1.12) and the Fourier and Newton's laws for @k and & , 
we transform Eqs.(l.lO) into the linearized Navier- Stokes-Fourier equations 

~~~(t,r)=lHOB-e~~18~~(1,r)C8G~(t,r), a=O,i,2,3.4 (1.14) 

with the random external sources bG 

&, = 0, a;; = --ii-'v&#, k = i, 2, 3, 86$ = -n-'V$(lQr - 6-*6&g& 

For a homogeneous gas (q = 0,P = 0) formulas (1.13) become the known expressions oftbe 
fluctuation-dissipation theorem for the correlators of equilibrium fluctuations of thermo- 
dyxmunic fluxes, which ware first obtained on phenomenological grounds /7/ and, also, in the 
kinetic theory for the tbermodynamical equilibrium state /13/ and for the local equilibrium 
state /5/. 



88 0. A. Grechannyi and V. V. Tokarchuk 

The new result of this investigation is the determination of nonequilibrium additions 
pkl/jj in the first two formulas of (1.13) and of the last formula (1.13). These formulas are 

CJensrsliZationS of relations for the hydrodynamic evolution stage of nonhomogeneous gas. Note 
that they do not contain physical parameters other than x and ii. 

From Eqs. (1.14) and formulas (1.13) we can obtain the representation of the simultaneous 
two-Point moment of the hydrodynamic field fluctuations <&D,,(1, rJ&J$(t, r2)) in the formofthe 
sum of S-correlation term &b(O) (t, rl, r2) and of the space correlator &o(') (t, rX, r,f which 
is Conformity with (1.5) are defined by formulas 

(F and g are the standard solutions of Eqs.fl.1) and (Z-6), respectively), and, also, to 
derive a closed system of hydrodynamic equations for b,&l). The derivation of these equa- 
tions is fairly cumbersome and is omitted here. It is, however, important to note that the 
nonequilibxium additions to b.#‘) in the form of F, and F, that correspond to locally equil- 
ibrium distribution in (1.15) prove to be quantities of the same order as the nonequilibrium 
correlator b&l) (for a homogeneous gas b,&“) = 0 f . It is, thus, necessary, when extending 
the Onsager method of calculating hydrodynamic fluctuations to the nonequilibrium domain of 
initial conditions to the linearized Navier-Stokes- Fourier equations for the two-transient 
moments of random fields &&(t,r) must be specified in the form of the sum hap@) + bup(” 
where the spatial correlators baB@) are determined by formulas obtained beforehand as the 
result of solving respective inhomogeneous equations. 

The difference of the obtained here results from those in /5,6,11/ which dealt with the 
kinetic theory of unbalanced hydrodynamic fluctuations should be noted. For instance, only 
equilibrium terms were obtained in /5,6/ in formulas (1.13) (the Landau-Lifshitz formulas). 
The erroneous conclusions in these investigations are due to several causes. In /5/ the cal- 
culation of correlator <MM) formula (1.3) did not contain the term J,,,, without which it 
contradicts the laws of conservation. Owing to this the author of /5/ had to limit the analy- 
sis of formula (1.5) to the case of F= F,, i.e. to neglect, in fact, all effects of unbal- 
ance. In /6/ the projection method, whose application is apparently limited to the domain of 
small deviation from equilibrium, was used for the derivation of hydrodynamic equations. In 
the extension of the Onsager method to the domain of nonequilibrium states the 8-correlation 
of simultaneous two-point moments of fluctuations of hydrodynamic fields was, in fact, post- 
ulated in /ll/. Because in that paper spa&al statistical links (b$=O) were not taken in- 
to account, the conclusion was made about the fluctuation intensity level being normal near 
the hydrodynamic stability threshold, which contradicts experimental data and the result Pre- 
sented in /5/. Actually at the stability threshold it is the behavior of spatial correlators 

b$ that is anomalous. 

2. Solution of the stochastic equation (1.2) using the Chapman-Enskog 
method. The class of standard solutions of the gaskinetic Boltsmann equation (1.1) by the 
Chapman-Enskog method is asymptotic in the domain of low Knudsen numbers h' --- l/L, where 1 
is the /mean/ free path length and L is a characteristic macroscopic length scale. Applica- 
tion of #is method to the solution of the stochastic kinetic equation (1.2) necessitates a 
preliminary analysis of the order of magnitude of its individual terms in the space-time scal- 
es that are characteristic of the hydrodynamic stage of gas evolution. The estimate of the 

magnitude of phase density fluctuation 6iV relative to the mean value is essential- In the 

linear theory 6.W is assumed small in comparison with F. A more rigorous eStimate for 

thermodynamic equilibrium state fg = 0): 6~ N L’mFo 8 where v" = V/W and V is the system 

volume, is obtained from (1.5). There are no physical grounds to assume any significant dif- 
ference of fluctuation intensity in various states on a continuous thermodynamic branch. Hence 
the relation 6N N VmF is used below also for nonequilibrium but stable states. Thisrela- 
tion is only violated in the narrow region close to the stability threshold. 

The introduction of dimensionless variables t' = t/r, rr = rjL, Y‘ = v/w , where w is the 

thermal speed and z = L/w , and of dimensionless functions F’ = v”wSF and ,QV' = d)/LT’6N 
leads to the appearance in (1.2) of parameter K, and it is necessary to take into account 

the estimate 61’ = zihjiL8v”GZ - fiT-‘ff which directly follows from (1.3). The formal introduc- 
tion of parameter K in Eqs.(l.l) and (1.2) in conformity with the dimensionless variables for 
fixing the order of magnitude of individual terms requires the fOllOWing fO!fnulaS: 

++ ) 
v.v P =J,(P,F) (2.1) 

68 = J,‘(F) 6N -i- KWi (t, x; K) (2.2) 
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where the dependence of 81 on K is, by virtue of (1.3), determined by the corresponding de- 
pendence of P on K. In final formulas K is set equal to unity. 

The asymptotic expansion F = PI + KF, + KY* + . . . of solution of Eq.(2.1) leads to the 
corresponding expansion of the collision operator J,'(F) = J,'(Fo) + KJ,'(P,) $ . . . and of the 
fluctuating collision integral 81 =6Z, + %h6Z, + KRI, + . . . . where 81,,81,,... are statistic- 
ally independent Gaussian fields with zero mean value and correlation functions, respectively, 
determined by the first, second, etc. terms in the expansion (1.3) in series in integral pow- 
ers of K. The asymptotic behavior of solutions of Eq.(2.2) for K<i is consistent with 
the formal expansion of the form 

6N = 8No + K’MN, + K6NI + K’MN8 + . . . (2.3) 

The coefficients of series (2.3) can be determined by the standard Chapnan-Bnskogmethod 
/12/ according to which the formal expansion (2.3) generates the operator expansion alat = 
a&at + ma,lat +Ka,!at + . . . . The method of determining a,,/i?t is based on the use of inde- 
composability of 6Qb, 

Jav*&N, = 8&D,, a = 0, 1, 2, 3, 4 

For the first Mterms of series (2.3) this method yields the expressions 

(2.4) 

(2.5) 

for the thermodynamic flux fluctuations in Eqs.(l.lO). 
The following formulas: 

P, = R (3mi4 ti)Q exp [- 3mc'/(48)1, F1 = F,h 3 - F,ii-lIAkVl. 1nT + BnV&] 

can be used for P, and F, /12/. In these formulas Al,(c) and &(e) are defined by the 
equations 

Taking into account these formulas, for the first three terms of series (2.3) we obtain 

Jo’@,,) 8No = 0, J,‘(FJhN, = - MO, J,,’ (F,)8N, = (a,/& + v.V)iSN,- J,' (F,)6No - 81, (2.6) 

(61,) = <sr,> = <61,61,> = 0 

(61, (i,v,) 81,(2, VI)> = - 6 (i--2)V,'(F,) f 
J,'(Po)IFo6 (vz - v*) <Sl,(f, VI) 61, (2, VI)> = 
8 O-2) (6 (VI-VP) J,' PO) PI + JthDI (F,, FJ-I- 
Jw* VI, Fo) - rJ,' PO) + J,.' (Fo)lF,b (VI - YJ -k 
[ J,' (F,) + J,’ V,)l PO 6 (~1 - vt)} 

Using formulas (2.8) it is possible to prove that the random fields 61, and 
properties (1.9). 

Solution of first two of Eqs.(2.6) with allowance for (2.4) yields 

6N, = ii-’ FOLD-’ 61, (t, z) 

The explicit form of operator a = a(i3uq is of the form a = (8 cD, a,_) . 

(2.7) 

(2.8) 

611 posess 

(2.9) 

(2.10) 

Its action on 
the product of the hydraulic field mean values is similar to that of the -f'ntroduced above 
operator of the linear variation 6 on the product of random hydrodynamic fields. 

Before proceeding with the solution of the third of Eqs.(2.6) it is necessary to deter- 
mine operator so/at using equations 

s d~[&/&+v~V]a(6@)Fo(~v)=0, a=O,i,2,3,4 (2.11) 

which with allowance for (2.41, (2.91, and (1.91, follow from Sq.(2.6) for SN,. 
The integrand in (2.11) can be transformed into (see the Appendix) 

[aopt + v *V]dNa= wwJ/(Fo) Fl + (aoiat8ub+ eb&q3)Foy3pa (2.12) 
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It is obvious that the substitution of this expression into (2.11) results ir; the cmcei- 
lation of the first term in its right-hand side owing to the orthogonality of JlJ' (Fo) F, .to 
the SU&PZC~ stretched CZW~~ the CO~.U.S~O~ invariants 

relationship Li,&DJ& = --8&#D,. 
I and that the m-rdnbq terms yield the 

Using the properties of the linearized collision operatar J,‘(F)Gy = J,’ (G9 P' and taking 
into account the obtained expression for 8,6@,,!&, we obtain 

[d&e f V-PI slv, = a (6@)J,r {F,) F, = LJ: (F,) QIV, + J,' (F@?) a (S@) F, 

whose substitution lnto the right-hand side of Eq.(2,61 for &V, reduces it to the form 

J,' (11'0) Km, - iJ (6Q) F,l = - 61,. 

Iks 0~vi.m.~ solution is 

The p~eviausly given determination of functions Al,(c) and Bkl (cf is used in (2.15) and the 
self-conjugacy of operator ~5, is taken into account. Introducing the flotation 
&Q&l 

SQK = BQ#‘) + 
and Bl-T,[ = SrI~p + 8&p and taking into account (2.14) from formulas (2.5) we obtain 

expressions (1,12) when A?!$= 2 and form the statistical properties of random fields 81, and 

61, I and formulas 12.15) we have the Gaussian properties and space-time 6 -correlation 
of external sources of thermodynamic flux fluctuations SQ, and B&. 

Thus in the zero approximation with respect to _K the hydrodynamic equations (1.101 for 
fluctuations are linearized Euler equations; expression 6q =j%u for thsfnsal flux fluctuations 
cancels with the respectitre term in Eq.jl.10) for Se. If the mean values of therm-&dynamic 
fluxes are taken into account in the first order with respect to K, their ffuctuiitZons must 
also be taken into account with the same degreee of accuracy 8q = 6q(O, + 6q(l)s_ tiqc*,, &P = &WJ) -+ 
gpv, ’ bp@r, The terms 6qc', and &PI') of order K'lt dre purely stochastic and, by virtue of 
(2.1;; r independent of Q md i! . Tt is shown below that they define fluctuation sources in 
the locally balanced star,e, while tie terms Eq@) and SP@t take into account, as expected, 
the damping of fluctuations owing to viscosity and thermal conductivity, as well as their 
tiimultaneous generation by external unbalanced sources 6Q(l, and IQW. 

Note that in /3,?/ bu%h terms in the right-hand side of Eq.tl.2) were assumed to be 
quantities of the same order X-l which, as can be readily checked, corresponds to the false 
estimate 6N- F and results in an expansion of 6N in fntegral powers of K. However the 
hydrodynamic equations for Eluctuations are unaffected in the case of thermodynamic equili- 
brium state, For Inhomogeneous states it manifests itself in the first approximation with 
respect k;s dil in that the nonequilibrium fluctuation sources BQC1 and &@ remain unaccomt- 

ed for, 

3. Calculation of cm-relators of fluctuating themodynamic fluxes. We 
introduce the abbreviated notation C, - A, @,ci1 = q(i), C, = B, GSr(Q= 6II@l, i I=- 0,1, where C, 

and 6?#) are vector functioas, and C, and G&(i) ars? second rank tensors. The space-time 
correlatars of ran&m fields &$Q and NW, i = 0,i can be expressed, using fomuXas f2.151 F 
in terms oi correlators of the fluctuating collisionintegrals 6f, and 811 as follows: 

It is thsn necessary to substitute into formulas (3,l) expressians (2.8) and calculate the 
integrals over the velocity space. Xeveral technical problems are encountered in the process, 
in particular in connection wikh very unw%eldy transformations of intqrands for i - 1, 

Another, shorter path makes possible the expression oi correlatora (3.11 directly in terms of 
standard integral brackets (or Q integrals). For this the expression for function UiP',F: vl, 
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v,] in (1.3) must be represented in the form 

I)[F,F; vlr vtl=-& 
f 
~~d%*~~a~a(%l$"%~'%~)F(%,)F~)X(%l~%i~t); Vi) X ~(%&%ib'; vd (3.2) 

It should be pointed out that the standard definition of the integral bracket [w; Gl /12/far 
two arbitrary functions W(v) and G(v) can be transformed, using (3.2) into 

I#.?; Cl= 1 ~vW(v)~~(v)=(Z~)-’ f dv&~W (vx)G (vt)DfFo, Fo; VI, val (3.3) 
x(vrv*v1'vI'; v)=8(v- v~)+6(v-v~)--6(v-v~)-~(v-va) 

where Q (vIv3.+v,'va') is the dissipation cross section. The proof that formulas (1.3) and 
(3.2) are identical can be found in /3/, and the validity of formula (3.3) Can be di?SCtly 

verified. 
Taking into account formula (3.2) for D, formula (2.8) can be written as 

(61, (1, v,) 61, (2, vP)> = 8,) i3(i-2) DC*) (v, - v,), i,i = 0,1 (3.4) 

D”)(vr, vr) = f) [F,, PO; ~1, v& D(l) (VI, vg)=+D [PO, F,; vlr vs? 

whose substitution into (3.1) using the definition (3.3) of the integral bracket allows us to 
write 

{SS"' (1)6S~‘T(2))~2(~T)e6*j~(i~2)A~i~(C~~~) 0 (3.5) 

A'O'(c, 3 6)=ICCI; CrJl (3.6) 

ZA’f’(G,Ca)=Rk ~I+[~~=]-~~;~~~+[~ &J* -I-[% %I*--IIjb; c&l*, &I=%% a*&=&2 (3.7) 

where t.; .] * is a modified integral bracket which for the three arbitrary functions R(v), 
H(V) and G(v) is determined by formula 

Formula (3.6) directly follows from (3.1) and the definition (3.3) of the standard in- 
tegral bracket. Formla (3.7) is obtained substituting (3.4) and (3.2) into (3.1) and in- 
tegrating with respect to vi and vs. Then, taking into account the sysnustry of (I we 
separate in the obtained integral expression the' terms that can be grouped in the standard 
integral brackets with the remaining terms grouped in modified integral brackets. Formulas 
(3.5)- (3.7) enable us to use the calculations of integral brackets given in /12/. 

The integral brackets in (3.6) define, in essence, the transport coefficients /12/ 

k[&; dtl=%r kT [&.I; B,,] = ZFE::, [AI; B,,] = 0 

Formulas (3.5) for correlators of random fields s(rO) and &II(O) reduce to the Landau- 
Lifshitz formulas /9/ and correspond to the first terms in formulas (1.14) and (1.15). Cor- 
relators (3.5) of randcm fields aQ(Q, &II(') depend by virtue of (3.7) on the mean values on 
parameters of thermodynamic fluxes and yield, consequently, nonequil.ibrium additions to the 
Landau-Lifahits correlation formulas. The integral brackets that constitue expression (3.7) 
for A(9 appear in the Barratt approximation of the Cham-Enskog method. 

Since we are primarily interested in the qualitative aspects of the gas nonhomoqeneity 
effects on hydrodynamic fluctuations, we shall use Maxwellian molecules in calculating h(l) . 
For these molecules all modified integral brackets in (3.7) are zero; [h; BBI = [ B;kBl, 2 [h; 
AAl = 3IA;hAl, Ih;ABI = (B; M], and the nontrivial contribution to (3.7) is provit&d by the 

brackets 

Substitution of these expressions into (3.7) results in that in (3.5) we obtain for i = 
j - i formulas that are the same as the second terms of the first two expressions in (1.13) 
and as the third of formulas (1.13). Since the expressions in (3.9) are bilinearwithrespect 
to transport coefficients, the terms corresponding to them in (1.13) represent the squared 
response of the system to thermal perturbations in inholnogeneous stable states of gas. 
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Formulas (3.5)-- (3.7) for the correlators of external sources of thermodynamic flux flue-- 

tuations are most comprehensive and are valid for any intermolecular interaction potential in 
a simple gas, and are compatible with the condition of existence of the collision integral, 
The formulas in (1.13) represent the estimate for (3.5) that corresponds to the first approxi- 
mation in the expansion of integral brackets in (3.7) in Sonin's polynomials (Maxwellian gas). 
Note that the general form of dependence of correlators of external thermodynamic fluctuation 
sources on mean values of thermodynamic fluxes, specified by formulas (1.13) applied to all 
subsequent approximations. Hence estimate (1.13) for (3.51 is evidently reasonably accurate. 

Appendix. The cumbersome computations involved in the direct proof of formula (2.12) 
can be avoided by using the expression a,/at=(@,/at, a;l;,)+ (a,b@$at,agD,a) which is directly im- 
plied by the definition of operator il,ial: 

With allowance for (2.91 we carry out differentiation in the second and third terms and 
obtain 

v.vdiv,, = a (am) V.VF,, (a,a@,lat. aaao,) aN, = v,aqp, asG,t F. 

Using the relations 

in which the equalities a&,iat= - e, ftbt and a (am) 6, @I = e~~~~~ are taken into account we 
reduce the first term to the form 

with 

Using here the equation &/at-j- v.Vl FI, = JD' (F@)F% which respresents the first approxima- 

tion of the Boftzmann equation with respect to the Knudsen parameter, we obtain relation (2.12). 
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